

Epidemiology, Containment, and Response to *C. auris* and CP-CRE

Snigdha Vallabhaneni, MD, MPH

Medical Epidemiologist, Antimicrobial Resistance Team

Prevention and Response Branch

Division of Healthcare Quality Promotion

Disclosures

None

Focus

Carbapenemase-producing Gram-negative Bacilli

Carbapenem-Resistant Enterobacteriaceae (CRE)

Carbapenem-Resistant Pseudomonas aeruginosa (CRPA) Acinetobacter baumannii (CRAB)

Carbapenem-Resistant

The new kid on the block

Candida auris

Why is Candida auris a public health threat?

- Highly drug-resistant yeast
- Causes invasive infections associated with high mortality
- Spreads easily in healthcare settings
- Difficult to identify

Major Antifungal Resistance Seen

General Residence of the Control of

>90% Azoles 2

7% **Echinocandins**

3

Polyenes

- >40% multidrug resistant
- A few resistant to all three classes

Causes invasive infections

 50% of clinical cases are bloodstream infections

40% in-hospital mortality in BSI cases

Affects the sickest of the sick

- Older age
- Multiple healthcare stays (acute and long term)
- PEG
- Central catheters
- Tracheostomy
- Ventilator
- On antibiotics and antifungals

C. auris clinical cases reported by state — United States, June 2016

C. auris clinical cases reported by state — United States, 2013–December 2016

C. auris clinical cases reported by state — United States, 2013–April 2018

C. auris clinical cases reported by state — United States, 2013-March 2019

C. auris clinical cases reported by state — United States, 2013–March 2019

Countries reporting *Candida auris* cases, by date of first report

Australia Austria Belgium

China

France

India

- 2011-2012 Study of 27 ICUs in India
 - 19 already had *C. auris*
 - 5% of candidemia in ICUs was C. auris
 - As high as 50% in some hospitals

South Africa

10% of Candidemia in multisite surveillance in South Africa was due to C.

Distribution of cases of Candida auris by type of infection and date of specimen collection, South Africa, 2012–2016. n = 1,306.

Kenya

- 2010 → 2016 in a leading hospital in Kenya
 - 38% C. auris
 - 25% C. albicans
- Candidemia was the leading cause of BSIs in their ICU

Spain

Spain

https://www.eccmidlive.org/#resources/how-should-we-manage-the-c-auris-outbreak

Twelve cases linked to healthcare abroad

- Patients from India, Pakistan, South Africa, Kenya, and Venezuela
- Identified weeks to two years after hospitalization in that country
- WGS showed isolates were related to those from the countries where patients received healthcare
- Isolates were from all different body sites

Healthcare abroad is risk factor for C. auris

- Majority of US cases don't have links to healthcare abroad
- US C. auris cases are a result of introductions from abroad followed by local transmission

vSNF A Ventilator/Trach Floor March 2017 *C. auris* PPS Results

- C. auris positive
- Screened negative for C. auris
- O Not tested for C. auris (refused or not in room)

vSNF A Ventilator/Trach Floor January 2018 *C. auris* PPS Results

- C. auris positive
- O Screened negative for C. auris
- Not tested for C. <u>auris</u> (refused or not in room)

vSNF A Ventilator/Trach Floor January 2018 CPO and *C. auris* PPS Results

- C. auris
- C. <u>auris</u> and KPC
- KPC or CRE with unknown mechanism of resistance
- C. auris, KPC, and NDM
- C. auris, VIM-CRPA, and KPC
- C. auris and KPC-CRPA

- O Screened negative for *C. auris*, but not tested for CRE
- O Screened negative for CRE and C. auris

It's new bug using old tricks

- Drug resistant, makes people sick, and spreads
- Similar to CRE, VRE, MRSA, and other drug resistant bugs
- We are still learning a lot about C. auris, but we also know how to control the spread of other similar germs
 - Many of the same principles can be applied to C. auris

C. auris has uncovered some weaknesses

- Laboratory capacity
- Infection control
 - Environmental disinfection
- Nursing home infection control practices
- Inter facility communication on transfer

What can you all do in Michigan?

- Early detection of *C. auris*
 - Find out if your lab has capacity to detect C. auris
 - Make sure all invasive isolates of *Candida* are determined to species level
 - Determine species of Candida in non-sterile sites if patient has hospitalization abroad or is in or coming from an LTACH or vSNF
 - Consider screening patients with overnight hospitalization abroad, especially with they also have a CPO.
- Bolster infection control practices pre-emptively
 - Audit hand hygiene
 - Medical equipment disinfection practices
 - Environmental disinfection

CPOs

Carbapenem Resistant Gram Negative Bacilli

	Percent Carbapenem Resistant ^{1,2}	Incidence of Carbapenem Resistant Isolates per 100,000 persons
Enterobacteriaceae		7.48 ³
Klebsiella spp.	6.9	
Enterobacter spp.	6.2	
E. coli	0.7	
A. baumannii	43.2	0.76 ⁴
P. aeruginosa	20.7	14.5 ⁴

¹Adult Device-associated Infections in ACHs reported to National Healthcare Safety Network Device and Procedure Module, 2015-2017 ²Percent carbapenem-nonsuceptibile shown for CRPA and CRAB

³Duffy et. Al., Effect of Carbapenem-Resistant Enterobacteriaceae (CRE) Surveillance Case Definition Change on CRE Epidemiology - Selected U.S. Sites, 2015-2016, IDWeek 2018.

⁴Emerging Infections Program Healthcare-Associated Infections-Community Interface (HAIC)

Carbapenemases

- Enzymes that degrade carbapenems
- Encoded on mobile genetic elements
- Can rapidly increase percent carbapenem resistant

KPC - Klebsiella pneumoniae carbapenemase

OXA-48 – Oxacillinase-48-type carbapenemase

NDM – New Delhi Metallo-β-lactamase

VIM – Verona Integron-encoded Metallo- β -lactamase

IMP – Imipenemase Metallo- β –lactamase

β-lactam/β-lactamase inhibitor combinations

OXA-23, OXA-24/40, OXA-58, OXA-235 -

Oxacillinases with carbapenemase activity

-most frequently identified in Acinetobacter spp.

Limited Ability to Detect Carbapenemases at Clinical Laboratories

- Among 4,685 acute care hospitals completing NHSN Facility Survey in 2016
 - 50% served by lab that performed carbapenemase testing for CRE
 - 80% used phenotypic testing methods
 - 18% used molecular methods

Shugart A, et al. (2018). Hospital microbiology laboratory practices for Enterobacteriaceae: Centers for Disease Control and Prevention National Healthcare Safety Network (NHSN) annual survey, 2015 and 2016. Infection Control & Hospital Epidemiology 2018, 39, 1115–1117. doi: 10.1017/ice.2018.153

Antibiotic Resistance Laboratory Network

Carbapenemase testing for CRE and CRPA at 56 state and local public health laboratories. Sentinel surveillance for carbapenemases in *Acinetobacter baumannii*. Colonization screening for carbapenemases

Confirmatory testing and colonization screening for *Candida auris*.

CP-CRE by Mechanism, AR Lab Network, January 2017 – December 2018

	CRE N=21,422 No.(%)#
Carbapenemase producing*	8145
KPC	7076 (87)
NDM	562 (7)
OXA-48-type	299 (4)
VIM	62 (1)
IMP	76 (1)

^{*}Carbapenemase-producing defined as positive by phenotypic carbapenemase activity test or by molecular assay for one of 5 carbapenemases

^{#105} CP-CRE and 3 CP-CRPA had >1 carbapenemase identified

Carbapenemases Identified in *Klebsiella*, *Enterobacter*, and *E. coli*

Percent of CRE that are Carbapenemase Producing (CP), by Genera (N=8,145), AR Lab Network 2017–2018

CP-CRE is positive for mCIM or Carba-NP or PCR positive for one carbapenemase genes. For Enterobacter, CP-CRE is defined as positive for at least one carbapenemase genes.

CRE with Multiple Carbapenemases, by Organism and Mechanism, N=71*

- Reports of CRE with >1 carbapenemase from October 2012 to November 2018
- Limited analysis to patient's first isolate for organism-mechanism combination
 - Identified 71 isolates from 67 patients

Cal Ham, CDC Data are Preliminary and Subject to Change

CRE with Multiple Carbapenemases, by Organism and Mechanism, N=71*

- Reports of CRE with >1 carbapenemase from October 2012 to November 2018
- Limited analysis to patient's first isolate for organism-mechanism combination
 - Identified 71 isolates from 67 patients

Cal Ham, CDC

Data are Preliminary and Subject to Change

CRPA by Mechanism, AR Lab Network, January 2017 – December 2018

	CRPA N=14,141 No. (%)
Carbapenemase producing*	458 (3)
KPC	85 (19)
NDM	17 (4)
OXA-48-type	0
VIM	186 (41)
IMP	16 (3)

^{*}Carbapenemase-producing defined as positive by phenotypic carbapenemase activity test or by molecular assay for one of 5 carbapenemases

^{# 3} CP-CRPA had >1 carbapenemase identified

Carbapenemase-Producing *P. aeruginosa* Are Highly Resistant

Broth microdilution antimicrobial susceptibility, CP-CRPA Isolates from 4 Patients Identified through EIP CRPA Surveillance, 2016-2018

Carbapenemases in *Acinetobacter*

- Can acquire carbapenemases including OXA variants typically only associated with Acinetobacter
 - E.g. 23, 235 (237), 24/40 (72), 58
- Other OXA variants are intrinsic to Acinetobacter
 - E.g. 51
- Acquired Carbapenesases also found in Enterbacteriaceae
 - E.g. KPC and NDM
- Concern for accelerated spread in high risk clones (e.g. ST 2)
 - Associated with outbreaks in other countries

Absence of Promising New Therapies for Carbapenemresistant *Acinetobacter baumannii*

WHO priority pathogens list for R&D of new antibiotics

Priority 1: CRITICAL

- · Acinetobacter baumannii, carbapenem-resistant
- · Pseudomonas aeruginosa, carbapenem-resistant
- Enterobacteriaceae, carbapenem-resistant, ESBL-producing

Anticipated Activity of New Antibiotics

Drug	CRE	CRPA	CRAB	Stage
Ceftazidime-avibactam	✓	Х	Х	FDA Approved
Meropenem-vaborbactam	✓	Х	Х	FDA Approved
Plazomycin	✓	Х	Х	Submitted to FDA
Imipenem-relebactam	✓	✓	X	Phase 3
Eravacycline	✓	✓	X	Phase 3
Cefiderocol	✓	✓	✓	Phase 3
Omadacycline	Х	✓	X	Phase 3
LYS228	✓	Х	X	Phase 2
Murepavadin	Х	✓	Х	Phase 2
Cefepime-AAI101	✓	Х	Х	Phase 2

Increase in CRAB Outbreaks Reported to CDC

All CRAB Outbreaks Reported During 2018-2019 had Carbapenemases Associated, N=16

#Outbreak defined as ≥2 epidemiologically linked cases Data are preliminary and subject to change.

CP-A. baumannii Outbreaks, 2018-2019

- Acute care hospitals (MICU, NICU, Burn units), LTACHs, high acuity SNFs
 - Often involve multiple units and facilities
- Linked to environmental contamination: portable chest x-ray, wound care scissors, patient chair, sink basin, keyboards, Pyxis
- Isolates often highly resistant

Example Susceptibility of OXA-23- producing CRAB

BMD Tests	RESULT	INTERPRETATION
Amikacin	64 μg/mL	Resistant
Ampicillin-sulbactam	16/8 μg/mL	Intermediate
Cefepime	>32 μg/mL	Resistant
Cefotaxime	>64 µg/mL	Resistant
Ceftazidime	32 μg/mL	Resistant
Ceftriaxone	>32 µg/mL	Resistant
Ciprofloxacin	>8 μg/mL	Resistant
Colistin	2 μg/mL	Susceptible
Doripenem	>8 μg/mL	Resistant
Gentamicin	>16 µg/mL	Resistant
Imipenem	32 μg/mL	Resistant
Levofloxacin	>8 μg/mL	Resistant
Meropenem	>8 μg/mL	Resistant
Minocycline	<=4 μg/mL	Susceptible
Piperacillin-tazobactam	>128/4 µg/mL	Resistant
Tetracycline	32 μg/mL	Resistant
Tigecycline	2 μg/mL	
Tobramycin	>16 µg/mL	Resistant
Trimethoprim-sulfamethoxazole	>8/152 µg/mL	Resistant

Summary

- Since 2017, the AR Laboratory Network tested >25,000 CRE and CRPA isolates
 - Action to prevent spread of carbapenemase-producing organisms
 - New insights into epidemiology
- Carbapenemase-producing P. aeruginosa and A. baumannii characterized by large outbreaks, unique challenges for carbapenemase detection
 - CRPA: Incidence high, but carbapenemases rare
 - CRAB: Incidence low, OXA carbapenemases common but limited testing

Action Steps

- 1. Optimize carbapenemase testing
 - Consider expanding carbapenemase testing to less common general
 - Test CRE and CRPA isolates for all 5 common carbapenemases
- 2. Be on high alert for carbapenemases in CRPA and CRAB
 - Monitor clinical cultures and investigate highly resistant isolates, including performing mechanism testing
- 3. Prevent introductions of novel resistance
 - On admission, screen patients hospitalized outside the U.S. in the prior 6 months for carbapenemase-producing organisms and C.

Talk to your state health department about testing available through the AR Laboratory Network

Containment strategy

 Goal: slow spread of novel or rare MDROs or mechanisms

- Systematic, aggressive response to single cases of high concern antimicrobial resistance
- Response Tiers
 - Tier 1: Novel resistance mechanisms, PanR
 - Tier 2: Mechanisms and organisms not regularly found in a region
 - Tier 3: Mechanisms and organisms regularly found in a region but not endemic

https://www.cdc.gov/hai/outbreaks/mdro/index.html

Containment Strategy

Systematic public health response to slow the spread of emerging AR

Resources:

- CRE Toolkit
 - https://www.cdc.gov/hai/organisms/cre/cre-toolkit/index.html
- Interim Containment Guidance for Novel or Targeted MDROs
 - https://www.cdc.gov/hai/outbreaks/mdro/index.html
- Hand Hygiene
 - https://www.cdc.gov/infectioncontrol/guidelines/hand-hygiene/index.html
- Environmental Cleaning and Disinfection
 - https://www.cdc.gov/infectioncontrol/guidelines/environmental/index.html
- Risk Assessment with Appropriate use of PPE
 - https://www.cdc.gov/hai/prevent/ppe.html
- Guideline for Isolation Precautions
 - https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html
- Reprocessing of Reusable Medical Equipment
 - (https://www.cdc.gov/hicpac/recommendations/flexibleendoscope-reprocessing.html)